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Giant nonlinear optical responses from 
photon-avalanching nanoparticles

Changhwan Lee1, Emma Z. Xu1, Yawei Liu2,3, Ayelet Teitelboim2, Kaiyuan Yao1,  
Angel Fernandez-Bravo2,8,9, Agata M. Kotulska4, Sang Hwan Nam5, Yung Doug Suh5,6 ✉, 
Artur Bednarkiewicz4 ✉, Bruce E. Cohen2,7 ✉, Emory M. Chan2 ✉ & P. James Schuck1 ✉

Avalanche phenomena use steeply nonlinear dynamics to generate 
disproportionately large responses from small perturbations, and are found in a 
multitude of events and materials1. Photon avalanching enables technologies such as 
optical phase-conjugate imaging2, infrared quantum counting3 and efficient 
upconverted lasing4–6. However, the photon-avalanching mechanism underlying 
these optical applications has been observed only in bulk materials and aggregates6,7, 
limiting its utility and impact. Here we report the realization of photon avalanching at 
room temperature in single nanostructures—small, Tm3+-doped upconverting 
nanocrystals—and demonstrate their use in super-resolution imaging in near-infrared 
spectral windows of maximal biological transparency. Avalanching nanoparticles 
(ANPs) can be pumped by continuous-wave lasers, and exhibit all of the defining 
features of photon avalanching, including clear excitation-power thresholds, 
exceptionally long rise time at threshold, and a dominant excited-state absorption 
that is more than 10,000 times larger than ground-state absorption. Beyond the 
avalanching threshold, ANP emission scales nonlinearly with the 26th power of the 
pump intensity, owing to induced positive optical feedback in each nanocrystal. This 
enables the experimental realization of photon-avalanche single-beam 
super-resolution imaging7 with sub-70-nanometre spatial resolution, achieved by 
using only simple scanning confocal microscopy and without any computational 
analysis. Pairing their steep nonlinearity with existing super-resolution techniques 
and computational methods8–10, ANPs enable imaging with higher resolution and at 
excitation intensities about 100 times lower than other probes. The low 
photon-avalanching threshold and excellent photostability of ANPs also suggest their 
utility in a diverse array of applications, including sub-wavelength imaging7,11,12 and 
optical and environmental sensing13–15.

The primary advantage of photon avalanching (PA) is its combination 
of extreme nonlinearity and efficiency, achieved without any periodic 
structuring or interference effects. PA was first observed over 40 years 
ago in Pr3+-doped bulk crystals, which exhibited a sudden increase 
in upconverted luminescence when excited beyond a critical pump 
laser intensity3. Its discovery quickly led to the development of other 
lanthanide-based bulk PA materials—used, for example, in efficient 
upconverted lasers4–6,16—and its unique properties continue to spark 
interest over diverse fields6,7.

PA is a positive-feedback system6 analogous to the second-order 
phase transition of ferromagnetic spin systems—a comparison that 
has proved to be useful for modelling the process5,17. In lanthanide-based 

PA, a single ground-state absorption (GSA) event initiates a chain reac-
tion of excited-state absorption (ESA) and cross-relaxation events 
between lanthanide (Ln3+) ions, resulting in the emission of many 
upconverted photons (Fig. 1a and Methods). The sensitivity of Ln3+ 
photophysics to local material properties has precluded the realization 
of PA in nanomaterials. Avalanche-like behaviour in previous nanopar-
ticle designs was ultimately the result of the formation of larger aggre-
gate materials18, non-PA thermal mechanisms19,20 or pre-avalanche 
energy looping6,11,13,21–27, with nonlinear order s ranging from 2 to 7 (s is 
defined by I I= s

e p, where Ie is the emission intensity and Ip is the pump 
intensity)7,11,22. There remains strong motivation for developing PA in 
nanoparticles, given that the ability to process these colloidal 
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nanomaterials in solution allows them to be incorporated into various 
device platforms, nanotechnologies and environments23,28, using bio-
compatible surface chemistries28–31 and materials32.

To design nanocrystals that may be capable of PA, we combined 
four key elements: (1) the recent design paradigm for upconvert-
ing nanoparticles, which emphasizes high Ln3+ content and energy 
confinement23,29,33–37; (2) the choice of Tm3+ (Fig. 1a), with its slow 
intermediate-state decay rate W2; (3) compositions that omit sen-
sitizers22 (for example, Yb3+ in Fig. 1a, inset); and (4) the selection of 
excitation wavelengths in the second near-infrared window (NIR-II) 
(either 1,064 nm or 1,450 nm; Fig. 1c) optimized for resonant ESA, in 
contrast to the usual Tm3+ ground-state pumping wavelengths (800 nm, 
or 980 nm with Yb3+ sensitization; Fig. 1)6,11,12,21,38. These design speci-
fications enabled us to synthesize Tm3+-doped β-NaYF4 core–shell 
structures 16–33 nm in total diameter29,33 (Methods; Supplementary 
Figs. 1, 2; and Supplementary Tables 1, 2), which are excited in the NIR-II 
region and emit in the NIR-I region at 800 nm (ref. 22).

To determine whether PA occurs, we examined the nanoparticles 
for three definitive criteria5,6: (i) stronger pump-laser-induced ESA 
compared to GSA, with the ratio of ESA to GSA rates exceeding 104 
(R2/R1 in Fig. 1c)22; (ii) a clear excitation-power threshold, above which 
a large nonlinear increase in excited-state population and emission is 
observed; and (iii) a slowdown of the excited-state population rise time 
at threshold. For PA, rise times typically reach more than 100 times the 
lifetime of the intermediate state, up to seconds6. Together, these 
criteria delineate PA from other nonlinear multiphoton processes, 
including conventional energy-transfer upconversion (Fig. 1a inset) 
and energy looping22.

Plots of Tm3+ emission at 800 nm versus 1,064 nm pump intensity 
measured on nanoparticle ensembles drop-casted onto glass substrates 
show that as Tm3+ content is increased from 1% to 4%, the degree of 
nonlinearity s also increases, but resides firmly in the energy looping 

regime, with s ≤ 7 (Fig. 2a). At these Tm3+ concentrations, the chain reac-
tion of ESA and cross-relaxation is too slow to compensate for radiative 
and multiphonon relaxation from the 3F4 intermediate state, which 
occurs with a rate of W2. However, at 8% Tm3+ doping, a clear threshold is 
observed at pump intensity of about 20 kW cm−2 (Supplementary Fig. 3 
and Table 3), beyond which the combination of cross-relaxation and 
ESA act as a gain, and a nonlinear slope of s > 22 is achieved (Fig. 2a, grey 
circles), surpassing the maximum value of 7 observed in the existing 
pre-avalanching systems. Up- and down-scans of excitation intensity 
display no measurable photobleaching nor hysteresis, thus showing no 
detectable contribution from excitation-induced thermal avalanching 
(Supplementary Information Fig. 4)39. Critically, all three PA criteria are 
met at room temperature for these 8% Tm3+ ANPs (Fig. 2).

To understand why 8% Tm3+ doping gives rise to such nonlinear emis-
sion, we modelled the PA process in ANPs using coupled nonlinear dif-
ferential rate equations17,40 (DREs; see Supplementary Information and 
Supplementary Tables 4–8). Fitting the model to the experimental data 
for 8% Tm3+ ANPs (Fig. 2a, grey dash-dotted line) yields an ESA-to-GSA 
rate (R2/R1) ratio of more than 10,000 (Supplementary Table 6), satisfy-
ing the R2/R1 > 104 criterion for PA6,41.

To observe the signature slow-down in the excited-state population 
rise times expected for PA4,6,17,42, time-dependent luminescence from the 
Tm3+ 3H4 level (800 nm emission) was measured (Fig. 2b; Methods and 
Supplementary Figs. 6–8). The rise time is defined as the time needed to 
reach 95% of the asymptotic value (Supplementary Fig. 7). We observe 
that a substantial lengthening of the luminescence rise time emerges 
near the PA threshold intensity, reaching a maximum of approximately 
608 ms (Fig. 2b)—nearly 400 times the lifetime of the 3F4 state—further 
verifying that the PA mechanism prevails in these nanoparticles.

Our modelling also predicts PA for even longer-wavelength excitation 
near 1,450 nm, resonant with ESA between 3F4 and 3H4, but not with GSA 
(Fig. 1c). This is a technologically attractive wavelength range because 
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cross-relaxation rate; a.u., arbitrary units.



232 | Nature | Vol 589 | 14 January 2021

Article

it is beyond the absorption cut-off of Si-based detectors and leads to 
emission that is easily detected by Si, and is also useful for deep-tissue 
imaging, including through-skull fluorescence imaging of live mouse 
brain at depths greater than 2 mm (ref. 43). Using 1,450-nm excitation, 
we indeed observe PA, with the emission–intensity curve showing a 
threshold at about 40 kW cm−2 and a maximum nonlinearity of s = 14.9 
(Fig. 2a, brown stars). More generally, the ANPs demonstrate PA for 
wavelengths between 1,400 nm and 1,470 nm (Supplementary Fig. 9), 
with the lowest threshold occurring at 1,450 nm in this range.

Recent theoretical treatments show that achieving PA with a large 
nonlinearity involves a complex balance between several coexist-
ing phenomena within the material7. However, in the limiting case in 
which the cross-relaxation rate s31 is much greater than W2, the DRE 
model predicts that threshold intensity is determined entirely by W2 
(refs. 5,17). In ANPs, s31 is controlled by the Ln3+ concentration, whereas 
the non-radiative decay component of W2 is dominated by losses at 
surfaces and interfaces29,34,35,44,45. To determine whether rebalancing 
these factors would reduce threshold intensity, we synthesized two 
8% Tm3+ core–shell structures designed to reduce surface losses, and 
thus W2. These designs include thicker shells, as well as larger core size 
than the 8% ANPs in Fig. 2, to further reduce the surface-to-volume 

ratio. The changes indeed result in a distinct reduction in threshold, 
to <10 kW cm−2 at room temperature (Fig. 3a, Supplementary Fig. 5).

We further hypothesized that increasing the Tm3+ content should 
change s31 and W2, and therefore the PA excitation threshold intensity. 
To study this effect, core–shell ANPs with 20% and 100% Tm3+ were 
synthesized (including two sizes of 20% Tm3+ ANPs; Supplementary 
Fig. 1), and the threshold intensity was found to increase with increasing 
Tm3+ content (Fig. 3a). This is consistent with recent studies showing 
that at these pump intensities, excited-state lifetimes are reduced (W2 
is increased) as Ln content increases within nanoparticles, with the 
resulting increase in ion–ion energy transfer opening many potential 
relaxation pathways that act collectively to depopulate and repopulate 
the levels29,46.

Models predict a linear dependence between PA threshold intensity 
and W2, with a slope that is determined by s31, W3 (the excited-state 
decay rate; see Fig. 1c) and the excited-state relaxation branching 
ratio5,17. These dependencies are shown in Fig. 3b for three different 
Tm3+ concentrations. As s31 increases, W3 and the branching ratio 
become less important, leading to a slight reduction in slope in the 
threshold-intensity–W2 curves. The presence of the 20% and 100% Tm3+ 
data points on nearly the same line demonstrates that by the time the 
Tm3+ content reaches 20%, s31 dominates, and the relative effects of W3 
and the branching ratio become almost negligible. This well defined 
relationship between the PA threshold and W2 shown in Fig. 3b has 
important implications for sensing applications, in which W2 can be 
modulated by environmentally dependent energy transfer to the ANP 
surface, with small changes in W2 (and thus threshold) resulting in large 
changes in luminescence for a given pump intensity.

To evaluate the efficiency and relative brightness of ANPs, we used 
a kinetic computational model of energy transfer within Ln3+-doped 
nanoparticles, similar to those used to reproduce the experimental 
upconverting quantum yields of Er3+/Yb3+co-doped upconverting nano-
particles33,47, as well as energy-looping nanoparticles22 (Supplementary 
Information). Our calculations reveal that for fully passivated core–
shell nanoparticles, the quantum yield can reach about 40% for ANPs 
excited beyond the threshold at 105 W cm−2 (Fig. 3c). Although the model 
has known limitations—in particular, the absence of higher-energy 
excited states—we note that calculated quantum yields are consistent 
with both previous quantum yield calculations for energy-looping 
nanoparticles22 and quantum yield measurements of PA-induced 
upconversion in fibres at room temperature16. In our calculations, we 
find that whereas the 8% Tm3+ ANPs are somewhat more efficient than 
the 20% ANPs at this pump fluence, the 20% ANPs are brighter (Fig. 3c). 
This is because brightness is a function of quantum yield, but also of 
the total number of emitters within the ANP (brightness is defined 
as the product of the wavelength-dependent Tm3+ ion absorption 
cross-section, the Tm3+ concentration and the quantum yield). The 
emission intensity shows a more nonlinear dependence on pump flu-
ence than does quantum yield, given that the extreme nonlinearity of 
PA emission is a function of both intensity-dependent quantum yield 
and excited-state populations.

A compelling application for ANPs is single-particle super-resolution 
imaging, as elucidated by the recently proposed photon-avalanche 
single-beam super-resolution imaging (PASSI) concept, which exploits 
the extreme nonlinear response of PA7. The size of the imaging point 
spread function in scanning confocal microscopy (SCM) scales inversely 
with the square root of the degree of nonlinearity s (as in multipho-
ton microscopy)7, with the full-width at half-maximum (FWHM) of an 
imaged nonlinear emitter in SCM given by:

λ
s

FWHM =
2NA

in the Gaussian optics approximation48 (where NA is the numerical 
aperture and λ is the wavelength). Therefore, deeply sub-wavelength 
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resolution would be realized automatically with ANPs during standard 
SCM. The imaging requires no complex instrumentation, excitation 
beam shaping or patterning, image post-processing, or alignment 
procedures7.

We performed single-ANP imaging, measuring a PASSI image spot of 
≤75 nm average FWHM when excited at 1,064 nm at the optimal pump 
intensity for PASSI, which corresponds to emission intensity at the 
top of the steep segment of the response curve7 (see Methods). More 
specifically, the image of the 8% Tm3+ ANP from the batch with s = 26 
(Fig. 3a), shows a short-axis FWHM of 65 ± 7 nm and a long-axis FWHM 
of 81 ± 9 nm (Fig. 4b and Supplementary Fig. 10), with its elliptical shape 
due to a slightly elliptical excitation spot. This spot size agrees well with 
PASSI simulations (Fig. 4e). The comparison with a diffraction-limited 
excitation spot size of 357 nm FWHM clearly shows the advantage of the 
extreme nonlinearity of PA (Fig. 4c). In Fig. 4a, the spot size is ~220 nm 
FWHM when excited closer to the saturation regime, where the degree 
of nonlinearity s is considerably lower, as predicted7 (Fig. 4d). The 
theoretical resolution limit considering s = 26 is 70 nm, in excellent 
agreement with the measured values. PASSI super-resolution and its 
unique power dependence is readily apparent, with two ANPs sepa-
rated by 300 nm being just resolvable when excited near saturation, 
but easily resolvable for intensities in the steep-slope region of the 
PA emission–pump intensity curve (Fig. 4g, h). The resolution is fully 
determined by the slope of the power-dependent emission (Fig. 4f) 
curve, allowing us to select the optimal intensity for imaging for a given 
ANP architecture once that curve is measured7. Beyond PASSI, there 
are also notable advantages for combining the steeply nonlinear ANPs 
with existing super-resolution approaches (Supplementary Table 11). 
For example, the extreme nonlinearity and anti-Stokes luminescence 
should improve the achievable signal-to-noise and resolution limits of 

methods such as nonlinear structured illumination microscopy and 
near-infrared emission saturation49 nanoscopy for a given photon 
budget9,10. Additionally, applying the photon localization accuracy 
concept to PASSI images (Fig. 4b), which already exhibit sub-100-nm 
resolution, yields a localization accuracy of <2 nm for only 7,600 
collected photons, compared to the 10–40 nm accuracies typically 
achieved8. Realizing that the longer rise times might limit scan rates50, 
we also calculated a multi-point excitation scheme (Supplementary 
Figs. 11–13) that suggests that possible scan rates of approximately 
4 s or less per frame are achievable and reasonable using multi-point 
PASSI.

Finally, we note that in characterizing this PA system, we measure 
~500–10,000-fold increases in emission intensity when the pump 
intensity is increased from the threshold (I p

th) to twice the threshold 
value, which takes us beyond the steep-slope region of the ANP response 
curve (Figs. 2a, 3a). This enhancement, which we define as the param-
eter Δ I I I I= (2 )/ ( )av e p

th
e p

th  , is substantially larger than in reported 
energy-looping systems (for example, Δav ≤ 50)11,22 and suggests a sim-
pler empirical method of identifying PA using a single measurable ratio. 
Δav captures the complex balance between R2/R1, cross-relaxation, and 
radiative versus non-radiative relaxation7. We find that all nanoparticles 
with ≥8% Tm3+ content reported here meet this criterion (Supplemen-
tary Table 9; with a maximum Δav value of ~10,000 attained with 20% 
Tm3+ ANPs, whereas a borderline value of ~500 is seen in the 100% Tm3+ 
ANPs, where the large increase in cross-relaxation rates leads to faster 
non-radiative depopulation of 3H4 (ref. 46).

In conclusion, we report steeply nonlinear nanomaterials, realizing PA 
in engineered nanocrystals at room temperature with continuous wave 
pumping. We observe that core–shell architectures doped with only 
Tm3+ ions exhibit avalanching behaviour for Tm3+ concentrations ≥8%, 
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and that the PA excitation threshold intensity is fully determined by the 
3F4 intermediate-state lifetime at higher concentrations. Further, we 
show that PA is achieved for excitation in the range 1,400–1,470 nm in 
addition to 1,064 nm. Along with emission intensities that scale nonlin-
early with pump intensity up to the 26th power—enabling sub-70-nm 
SCM imaging resolution and <2-nm photon localization—these results 
can enable applications in local environmental, optical and chemical 
reporting and in super-resolution imaging.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author 
contributions and competing interests; and statements of data and 
code availability are available at https://doi.org/10.1038/s41586-020-
03092-9.
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Methods

Materials
Sodium trifluoroacetate (Na-TFA, 98%), sodium oleate, ammonium 
fluoride (NH4F), yttrium chloride (YCl3, anhydrous, 99.99%), thulium 
chloride (TmCl3, anhydrous, >99.9%), gadolinium chloride (GdCl3, anhy-
drous, 99.99%), yttrium trifluoroacetate (>99.99%), oleic acid (OA, 90%) 
and 1-octadecene (ODE, 90%) were purchased from Sigma-Aldrich.

Synthesis of core ANPs
The synthesis of NaY1−xTmxF4 ANP cores with average diameters ranging 
from d = 10 nm to 18 ± 1 nm (see Supplementary Table 1) was based on 
reported procedures44. For the case of x = 0.01 (meaning 1% Tm3+ doping), 
YCl3 (0.99 mmol, 193.3 mg) and TmCl3 (0.01 mmol, 2.8 mg) were added 
into a 50-ml three-neck flask, followed by an addition of 6 ml OA and 
14 ml ODE. The solution was stirred under vacuum and heated to 100 °C 
for 1 h. During this time, the solution became clear. After that, the flask 
was subjected to three pump–purge cycles, each consisting of refill-
ing with N2 and immediately pumping under vacuum to remove water 
and oxygen. Afterwards, sodium oleate (2.5 mmol, 762 mg) and NH4F 
(4 mmol, 148 mg) were added to the flask under N2 flow. Subsequently, 
the resealed flask was placed under vacuum for 15 min at 100 °C, followed 
by three pump–purge cycles. Subsequently, the flask was quickly heated 
from 100 °C to 320 °C (the approximate ramp rate was 25 °C min−1). The 
temperature was held at 320 °C for 40–60 min, after which the flask was 
rapidly cooled to room temperature using a stream of compressed air.

To isolate the nanoparticles, ethanol was added to the solution in 
a 1:1 volume ratio, and the precipitated nanoparticles were isolated 
by centrifugation (5 min at 4,000 rpm). The pellet was suspended in 
hexanes and centrifuged to remove large and aggregated particles. The 
nanoparticles remaining in the supernatant were washed two additional 
times by adding ethanol, isolating by centrifugation and dissolving the 
pellet in hexanes. The nanoparticles were stored in hexanes with two 
drops of oleic acid to prevent aggregation.

Shell growth
A 0.1 M stock solution of 20% GdCl3 and 80% YCl3 was prepared by add-
ing YCl3 (2 mmol, 390.5 mg), GdCl3 (0.5 mmol, 131.8 mg), 10 ml OA and 
15 ml ODE to a 50-ml three-neck flask. The solution was stirred and 
heated to 110 °C under vacuum for 30 min. After that, the flask was filled 
with N2 and heated to 200 °C for about 1 h, until the solution became 
clear and no solid was observed in the flask. Subsequently, the flask 
was cooled to 100 °C and placed under vacuum for 30 min. A 0.2 M 
solution of Na-TFA was prepared by stirring Na-TFA (4 mmol, 544 mg), 
10 ml OA and 10 ml ODE in a flask under vacuum at room temperature 
for 2 h, ensuring that all chemicals were dissolved. Using a nanoparticle 
synthesis robot, the Workstation for Automated Nanocrystal Discovery 
and Analysis (WANDA), 3–9 nm NaY0.8Gd0.2F4 shells (see Supplementary 
Table 1) were grown on ANP cores using a layer-by-layer protocol similar 
to that deployed in Levy et al.22. Briefly, for a shell thickness of 3 nm, 
6 ml ODE and 4 ml OA were added to the dried ANP cores and heated 
to 280 °C at 20 °C min−1 in the WANDA glove box. The automated pro-
tocol alternated between injections of a 0.2 M Na-TFA stock solution 
and a 0.1 M stock solution of 20% gadolinium and 80% yttrium oleate 
solution. One injection was performed every 20 min for a total of 12 
injections (6 injections for each precursor). Following the last injection, 
each reaction was annealed at 280 °C for an additional 30 min and then 
cooled rapidly by nitrogen flow. The particles were isolated and puri-
fied according to the purification protocol described for ANP cores.

Core–shell NaYF4 nanoparticles doped with Tm3+ (1–100%) were 
synthesized using analogous methods.

Nanoparticle characterization
Transmission electron microscopy (TEM) was performed using a JEOL 
JEM-2100F field-emission TEM system at an acceleration voltage of 

200 kV, a FEI Themis 60-300 STEM/TEM operating at an acceleration 
voltage of 300 kV and a Tecnai T20 S-TWIN TEM operating at 200 kV 
with a LaB6 filament. Size statistics were acquired for approximately 
100 nanoparticles using ImageJ software. X-ray diffraction measure-
ments were performed using a Bruker D8 Discover diffractometer with 
Cu Kα radiation. The average core diameter and shell sizes are given 
in Fig. 3a. We note that the larger cores are slightly prolate in shape 
(Supplementary Fig. 2).

Preparation of nanocrystal film samples
Nanoparticles (40 μl of a 1 μM suspension in hexane) were either 
drop-cast or spin-coated on a coverslip. Atomic force microscopy 
measurements (Bruker Dimension AFM) were performed to measure 
the thicknesses of the films.

Optical characterization of ANPs
For single-ANP imaging, a dilute dispersion of nanoparticles was depos-
ited on a glass coverslip and placed on an inverted confocal microscope 
(Nikon, Eclipse Ti-S inverted microscope). A 1,064-nm continuous-wave 
diode laser (Thorlabs, FELH 750) or a Ti-sapphire pulsed laser (Coherent, 
Chameleon OPO Vis, 1,390–1,510 nm, 80 MHz) were directed into the 
back aperture of an NA = 1.49 100× immersion-oil objective (Olympus) 
and focused directly onto the sample on an three-dimensional (XYZ) 
nanoscanning piezo stage (Physik Instrumente, P-545.xR8S Plano).

For measurements on film samples, an NA = 0.95 100× air objective 
lens (Nikon) was used. Emitted light was collected back through the 
same objective, filtered by 850-nm short-pass (Thorlabs, FESH 850) 
and 750-nm long-pass (Thorlabs, FELH 750) filters, and sent to a spec-
trometer equipped with an electron-multiplying charge-coupled device 
(Princeton Instruments, ProEM: 16002 eXcelon3) or a single-photon 
avalanche diode (Micro Photon Device, PDM series). For power depend-
ence measurements, a neutral density wheel with a continuously vari-
able density was used, synchronized with the collection system and 
automatically rotated by an Arduino-controlled rotator. Powers were 
simultaneously recorded by a Thorlabs power meter by using a glass 
coverslip to reflect ~10% of the incoming flux. Average excitation power 
densities were calculated using measured laser powers and the 1/e2 area 
calculated from the imaged laser spot.

Time-resolved photoluminescence
Samples were excited with a diode laser (Thorlabs) modulated at fre-
quencies from 0.5 Hz to 5 Hz by a function generator (Stanford Research 
Systems DS345). Emitted light collected by the NA = 0.95 100× objec-
tive (Nikon) was detected by a single-photon avalanche diode (Micro 
Photon Device, PDM series). A time-correlated single-photon counting 
device (Picoquant, Hydraharp 400) was used to record the timing data.

PA mechanism in our ANPs
As discussed in the main text, a single GSA event in lanthanide-based PA 
initiates a chain reaction of ESA and cross-relaxation events between 
Ln3+ ions, resulting in the emission of many upconverted photons. 
This mechanism amplifies the population of excited states, such as the 
800-nm-emitting Tm3+ 3H4 level (Fig. 1c), through a positive-feedback 
loop of ESA from an intermediate state (3F4), followed by cross-relaxation 
(an energy-transfer process) back down to the same intermediate state 
while promoting a second ground-state Tm3+ ion up to its intermediate 
state (we note that the cross-relaxation process is accompanied by the 
emission of phonons to compensate an energy mismatch of about 
1,200 cm−1). This process can effectively double the 3F4 population on 
every iteration of the loop, and the repeated looping results in nonlinear 
amplification of excited-state populations.

The ESA is effective because the absorption peak for the electronic 
3F2–3F4 transition is close to the 1,064-nm excitation wavelength. How-
ever, the 1,064-nm photons have an energy mismatch of ~1,200 cm−1 
for the electronic 3H6–3H5 transition, which decreases the GSA 



cross-section at that wavelength. Owing to the energetic mismatch, 
GSA is a phonon-assisted process in this case, which makes its oscilla-
tor strength very small, ~104 times weaker than for excitation resonant 
with the purely electronic f–f transitions.

Materials considerations for achieving PA in nanoparticles
PA was first observed at low temperatures—as is often the case—although 
several room-temperature demonstrations have been reported in bulk 
systems (for example, refs. 5–7,18,51–55). In nanomaterials, however, the sen-
sitivity of Ln3+ photophysics to local material properties has precluded 
the realization of PA and has hindered room-temperature operation.

As noted in the main text, four key features were combined to design 
nanocrystals that may be capable of PA. The first is the recent design 
paradigm for Ln3+-based upconverting nanoparticles, in which high Ln3+ 
content, engineered energy confinement and reduced surface losses 
result in exceptional efficiencies and brightness23,29,33–37,56. A second 
feature is the choice of Tm3+ (Fig. 1a), an ion with a particularly slow 
intermediate-state decay rate W2, which strongly influences PA behav-
iour5–7 (see below). The third critical aspect exploits the compositional 
strategy employed previously for energy-looping nanoparticles22, in 
which typical Yb3+ sensitizers are omitted and high concentrations of 
Tm3+ ions are doped into a β-phase NaYF4 matrix, enhancing Tm3+–Tm3+ 
cross-relaxation and ESA while reducing GSA (Fig. 1). The fourth key 
element, also shared with energy-looping nanoparticles, is the selection 
of excitation wavelengths in the NIR-II transparency window (either 
1,064 nm or 1,450 nm; Fig. 1), which are optimized for resonant ESA 
while maintaining non-resonant GSA, in contrast to the usual wave-
lengths used for pumping Tm3+ (800 nm, or 980 nm when combined 
with Yb3+ sensitization; Fig. 1)6,11,12,21,38.

To determine whether these design criteria enable nanocrystals to 
host PA, we synthesized Tm3+-doped β-NaYF4 core–shell structures 
16–33 nm in total diameter29,33. As described in Methods sections 
‘Synthesis of core ANPs’ and ‘Shell growth’, the Tm3+-doped core in 
each ANP is surrounded by an optically inert shell to minimize surface 
losses33 (Figs. 1, Supplementary Figs. 1, 2 and Supplementary Tables 1, 
2). These nanoparticles may be excited in the NIR-II region to emit in 
the NIR-I region at 800 nm (ref. 22). Both spectral windows are valu-
able for imaging with limited photodamage through living systems 
or scattering media57. More generally, the near-infrared operation 
and exceptional photostability, along with the unique combination 
of steep nonlinearity and efficiency offered by PA suggest the utility 
of ANPs in a diverse array of applications, including sub-wavelength 
bioimaging7,11,12, photonics and light detection56–58, temperature13,14,59 
and pressure15 transduction, neuromorphic computing60 and quantum 
optics61,62.

Data availability
All data generated or analysed during this study, which support the 
plots within this paper and other findings of this study, are included 
in this published article and its Supplementary Information. Source 
data are provided with this paper.

Code availability
The code for modelling the PA behaviour using the differential rate 
equations described in the Supplementary Information are freely avail-
able at https://github.com/nawhgnahc/Photon_Avalanche_DRE_cal-
culation.git.
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